JOM 23694

Multipolar framework chemistry. Gallium- and phosphorus-containing heterocycles

Kari M. Webb and Norman E. Miller

Department of Chemistry, University of South Dakota, Vermillion, SD 57069 (USA) (Received July 22, 1992; in revised form February 12, 1993)

Abstract

A novel six-membered heterocycle with B, Ga, N, and P heteroatoms, $Me_2GaCH_2PMe_2BH_2CH_2NMe_2$, is synthesized from a lithiated borane base. Its reaction with anhydrous acids leads to Ga-Me bond cleavage and formation of monosubstituted derivatives. A similar derivative chemistry pertains for the analogous heterocycle, $Me_2GaCH_2NMe_2BH_2CH_2NMe_2$. Two related six-membered heterocycles with phosphonia atoms are also characterized, one with a thionia ring atom and one a spiroheterocycle with piperidine: $Me_2P(CH_2BH_2)_2SMe$ and $Me_2P(CH_2BH_2)_2N(CH_2)_2CH_2$.

1. Introduction

Characterization of an increasing number of new compounds with the common molecular features of saturated valency and multiple polar sites arising from dative bonding encourages a classification of this type of molecular architecture as multipolar framework chemistry. 1,1,4,4-Tetramethyl-1,4-diazonia-2,5-diboratacyclohexane [1]

is such a compound, and it has sufficient thermal stability to presume skeletal integrity in chemical processing [2]. The alternating polarity contributes to the stability of this compound, and to its crystalline orientation [3]. Also a critical feature, particularly because of its N-B dative bonding, is the steric buttressing of the borane moiety by the methyl groups on nitrogen, a feature demonstrated to be important for the stability of the cation $(Me_3N)_2BH_2^+$ [4]. In those molecules with P-B dative bonding, the polarity contributes more significantly. In the heterocycle $H_2B(PMe_2CH_2)_2BH_2$ [5], even the sterically unprotected borane has ambient stability.

0022-328X/93/\$6.00

In this laboratory multipolar framework examples with acyclic and heterocyclic structure have been characterized. A few examples of each type show something of the scope possible:

$$Me_{3}\dot{N}BH_{2}CH_{2}\dot{N}Me_{2}BH_{3},$$

$$[(Me_{3}\dot{N}BH_{2}CH_{2}\dot{N}Me_{2})_{2}BH_{2}]^{+} [6],$$

$$Me_{2}\dot{N}(CH_{2})_{2}BH_{2} [7],$$

$$Me_{2}\dot{P}(CH_{2}BH_{2})_{2}\dot{N}Me_{2} [8].$$

+

-

Recent success in bringing about substitution at the boron site(s) with anionic and neutral ligands [9], but more importantly with transformable groups such as $-CO_2H$ [10], is an encouraging development. Substitution reactions will allow the conjugation of multipolar framework moieties to a variety of organic structures and give access to their unique polarity features for practical applications.

Continuing exploration of heterocycles in the multipolar framework category has led to the isolation of a new six-membered ring with B, Ga, N, and P heteroatom polar sites. Study of its chemistry and the method of synthesis was undertaken and is reported here. Additionally, other heterocycles with phosphonia replacement of carbon have been made with B, P, N and B, P, S heteroatom polar sites.

Correspondence to: Dr. N.E. Miller.

2. Results and discussion

Synthesis of a new heterocycle, 1,1,3,3,4,4-hexamethyl-1-azonia-2-gallata-4-phosphonia-5-boratacyclohexane (1) was achieved using a lithiated linear base Me₃PBH₂CH₂NMe₂ (Scheme 1).

$$Me_{3}PBH_{2}CH_{2}NMe_{2} \xrightarrow{"BuLi} Me_{2}PBH_{2}CH_{2}NMe_{2} \xrightarrow{1/2(Me_{2}GaCl)_{2}} CH_{2}Li$$

$$H_{2}B \xrightarrow{+} Me_{2} \xrightarrow{+} GaMe_{2}$$

$$I$$

Scheme 1.

The heterocycle 1 is a distillable clear liquid at room temperature, soluble in organic solvents, with a phosphine-like odor. Toward air oxidation, it is not as robust as its BCNGaCN-sequenced analogue, 2 [11].

The structural assignment of 1 was supported by analyses, mass spectral and infrared data, and multinuclear NMR (³¹P, ¹H, ¹¹B). High resolution mass spectral data show an intense high mass envelope (as compared to low intensity parent mass peaks for BCN-BCN-sequenced heterocycles), a general feature for the gallium-containing heterocycles examined. A 50% peak at m/e 232.0753 agrees to 0.4 ppm with expected exact mass for C₇H₂₁NP¹¹B⁷¹Ga, the parent minus CH₃ mass. Furthermore, the intensity pattern for the 232.0753, 231.0799, 230.0769, and 229.0804 (50, 20, 94, 22%) envelope agrees with that expected for the ${}^{11}B^{71}Ga$, ${}^{10}B^{71}Ga$, ${}^{11}B^{69}Ga$, ${}^{10}B^{69}Ga$ abundance (62, 15, 94^{*}, 23%) normalizing on the 94% peak. The facile loss of CH₃ corresponds to the facile loss of H from the BCNBCN-sequenced heterocycles. Thus, a monomeric formula in the gas phase is established. ¹¹B NMR also establishes B-P bonding by shift ($\delta = -29.8$ ppm) and splitting, the approximate 1:3:3:1 signal $(J \approx 90 \text{ Hz})$ arising from similar BP and BH coupling constants. On proton decoupling a clean doublet, $J_{\rm BP}$ = 73 Hz, is observed.

Both gallium-containing heterocycles, 1 and 2, were found to react with protonic acids in the absence of solvent to substitute methyl on gallium by the anion form of the acid (Scheme 2).

Scheme 2.

The regiospecificity clearly reflects a more negative methyl on gallium than hydrogen on boron. Reaction in the presence of chloroform solvent was not observed.

Characterization of the cyano derivative 1b was made difficult because a cyanide stretch could not be distinguished in the infrared spectrum. The composition of 1b was supported by mass spectral data and the physical state as a solid *versus* liquid 1. It is known that the C=N stretch in the $-BH_2-C=N$ moiety is weak compared to isonitrile-linked moiety $-BH_2-N=C$ [12]. Likely, a weak absorption on the low frequency side of the BH stretching absorption is in fact a cyanide stretch. High resolution mass spectral data show significant parent-Me⁺ and parent-CN⁺ envelopes of roughly the correct intensity ratios expected. Formulation as a cyanide rather than an isonitrile derivative is based on the absence of a strong isonitrile infrared stretch.

The oxyanion substituents in 1a, 2a and 2b are formulated as Ga-O bonded, analogous to similar substituents on $Me_2NCH_2BH_2NMe_2CH_2BH_2$.

In sharp contrast to many multipolar framework compounds, 1 and 2 do not react smoothly with halogens, and no characterizable compound was isolated. The production of $Me_3NH^+I^-$ and $Me_4N^+I^-$ in the iodination of 2 suggests that there is no selectivity for Ga with the more aggressive electrophiles. Derivatives with GaI (2c) and GaF (2d) bonds were isolated from reactions using Me_3NHI and Me_3NHPF_6 above room temperature. 2c is very reactive in air.

TABLE 1. Reaction $Me_2NCH_2BH_2NMe_2CH_2Li$ and $H_2BX-L \rightarrow Me_2NCH_2BH_2NMe_2CH_2BH_2$

x	L	Solvent	% Yield	
_	+	Ether	_ a	
C1	SMe ₂	Hexane	11.1, 2.4	
C1	SMe ₂	Benzene	_	
C1	SMe_2	Ether	15.2, 14.5, 10.6	
C1	SMe ₂	CH ₃ OCH ₂ CH ₂ OCH ₃	-	
C1	OEt_2	Ether	1.4, 7.8	
Br	SMe ₂	Hexane	-	
Br	SMe_2	Ether	-	
Br	SMe ₂	CHCl ₃	-	

^a Blank run using only lithium chelate to estimate amount of $Me_2NCH_2BH_2NMe_2CH_2BH_2$ contaminant present. No entry means yield was not measurably significant.

2.1. Ring closure with lithiated bases and boron halides

Both 1 and 2 were obtained in reasonable yields by a ring closure involving a lithiated multipolar base and the Me₂GaCl moiety. An interesting extension of this method using haloboranes might be suited to obtaining BCN-sequenced heterocycles with monosubstituted boron not readily accessible otherwise. A systematic investigation was therefore undertaken to find conditions appropriate for ring closure using LiCH₂NMe₂ BH₂CH₂NMe₂ with XBH₂-L adducts, wherein the product would be the highly stable, known multipolar heterocycle Me₂NCH₂BH₂NMe₂CH₂BH₂ (Table 1). In no case was more than 15% yield observed, and more often than not no yield was observed. In all cases a polymeric, gummy semisolid was the main product. Attempts to reduce polymerization by slow addition of one or both reagents and/or dilution by five-fold also failed. These results, though disappointing are not significantly different than the low yield reported by Schmidbaur's group for the synthesis of the very stable heterocycle H₂BPMe₂CH₂BH₂CH₂PMe₂ [5].

Surprisingly, the highest yield (15%) resulted by rapid combination at low temperature $(-78^{\circ}C)$ followed by warming to room temperature and long stirring. Me₂SBH₂Cl gave the better yield when ether was the solvent. The only new heterocycle attempted using the conditions giving the best yield was the B-dimethyl derivative (3).

2.2. Phosphonia heterocycles with μ -ligand diborane linkage

A new multipolar heterocycle 4 with B, P, and S polar heteroatoms was made by a reported method [8].

With a "1,3" disposition of two BH₂ moieties, this heterocycle resembles diborane with both bridges replaced by μ -ligands. Its structure is presumed to be a chair form of a cyclohexane-like ring which is the basis of its replacement name, 1,4,4-trimethyl-1-thionia-4-phosphonia-3,5-diboratacyclohexane.

It is a white sublimable solid with significant stability under ambient conditions. This stability is likely related to the electron releasing ability of the -SMeBH₂- moiety toward the other BH₂ group. Similar enhanced stability obtains for Me₃NBH₂SMeBH₂-NMe₃⁺ and (Me₃NBH₂SMe)₂BH₂⁺ [14] as compared to (Me₂S)₂BH₂⁺ [4]. The ¹H NMR revealed diastereotopic PCH₃ by its resonances (1:2:1 triplet of overlapping doublets) consistent with a chair conformation of the ring, whether rapidly inverting or not.

In a similar manner a spiroheterocycle, 5, was synthesized using piperidine instead of MeSH. Like the analogous heterocycle $Me_2P(CH_2BH_2)_2NMe_2$, made from dimethylamine, 5 is an air-stable, sublimable white solid. The magnitude of this stability is established by unchanged infrared and NMR spectra for samples stored in screw-capped vials for six years.

3. Experimental details

Where required, a standard vacuum line capable of pumping to 10^{-5} Torr noncondensible gas was used. Melting points, uncorrected for emergent steam, were measured with a Thomas-Hoover capillary melting point apparatus. High resolution mass data were obtained from the Midwest Center for Mass Spectrometry, Chemistry Department, University of Nebraska/ Lincoln. Elemental analyses were obtained from Schwarzkopf Microanalytical Lab, Woodside, New York. Chloroform was freed of ethanol by repeated water extraction followed by drying over sodium sulfate and distillation from phosphoric anhydride. Hexane was freed of olefin traces by repeated extraction with concentrated sulfuric acid followed by water washing, drving, and distillation from calcium hydride. Ether, tetrahydrofuran, and glyme (ethylene glycol dimethyl ether) were dried over KOH and distilled from lithium aluminum hydride and/or sodium ketyl. Other reagents, including n- and t-butyllithium were commercially obtained and used without additional purification. NMR chemical shifts, δ , ppm for ¹H, ¹¹B, and ³¹P were referenced to tetramethylsilane (or residual CHCl₃), external BF₃-etherate, and external 85%aqueous H₃PO₄, respectively. NMR data were obtained on a Bruker AC300 (300 MHz, 96.3 MHz, and 121.5 MHz, respectively, for ¹H, ¹¹B, ³¹P). Infrared (IR) data were obtained on a Digilab FTS-40 or Beckman 4240 spectrometer.

3.1. $Me_2GaCH_2PMe_2BH_2CH_2NMe_2$ (1)

Me₃PBH₂CH₂NMe₂, 150 mg (1.0 mmol), prepared similarly to a literature method [6], dissolved in 3 ml of THF was treated in one portion with 0.6 ml of 1.7 M (1.02 mmol) t-butyllithium in pentane at -30° C, and allowed to stir for 30 min at -30° C. To the resulting bright yellow solution was added 1.0 ml of a solution containing dimethylgallium chloride (1.02 mmol Ga equivalent) in benzene, discharging the color. A white crystalline precipitate formed slowly after warming to room temperature. After an additional 12 h stirring, solvent was removed under vacuum. The volatile product passed a -20° C trap and was stopped in a -78° C trap; mp 18–23°C. In a larger run, using 6.46 mmol starting material, a yield of 41% was achieved. Analysis calculated for C₈H₂₄NPBGa: C, 39.09; H, 9.84; N, 5.70. Found: C, 39.87; H, 9.11; N, 6.32%.

High resolution mass spectrum, m/e, % intensity, formula, $\Delta(m/e \text{ observed} - m/e \text{ calculated}, \text{ppm})$, assignment: 232.0753, 50, $C_7H_{21}NP^{11}B^{71}Ga$, 0.4, (parent $-CH_3)^+$; 231.0799, 20, $C_7H_{21}NP^{10}B^{71}Ga$, 4.6, (parent $-CH_3)^+$; 230.0769, 94, $C_7H_{21}NP^{11}B^{69}Ga$, 3.9, (parent $-CH_3)^+$; 229.0804, 71, $C_7H_{21}NP^{10}B^{69}Ga$, 3.3; 185.0172, 58.0650, 100, C_3H_8N , -11.6, $(CH_3)_2$ $N=CH_2^+$

NMR data (nucleus, multiplet (area), δ , coupling constant): ¹¹B (H decoupled), doublet, -29.8, J_{BP} 74

Hz; ³¹P (H decoupled) quartet, -3.97, J_{PB} 74 Hz; ¹H, Me₂N singlet (6), 2.29; PMe₂ doublet (6), 1.227; PCH₂ doublet (2), 0.276; GaMe₂ singlet (6), -0.58.

IR data (cm⁻¹; abbreviations, s strong, m medium, w weak): 2889 s (structured), 2338s, 2266w, 1460m (structured), 1420w (structured), 1370w, 1300w, 1285m, 1194m, 1142m, 1100s, 1069w, 1010/1000 doublet m, 975m, 940m, 918m, 891m, 841m, 790m, 746m, 715s.

3.2. Me₂NCH₂BH₂PMe₂CH₂GaMeX (la-c)

Reactants were charged into small ampoules equipped with breakoff capillaries for reintroduction into the vacuum line, using standard vacuum line techniques. On warming and stirring at reaction temperature gas evolution was observable. After the reaction period the ampoules were connected to vacuum line, and the noncondensible gas was measured. The residue was transferred to a sublimer and heated under high vacuum dynamic pumping (Table 2).

Anal. calcd. for **1a**, $C_9H_{24}NPO_2GaB$: C, 37.30; H, 8.34; N, 4.83. Found: C, 37.69; H, 8.27; N, 3.95%. Calcd. for **1b**, $C_8H_{21}N_2PGaB$: C, 37.42; H, 8.24; N, 10.91. Found: C, 38.31; H, 8.79; N, 10.06%. Calcd. for **1c**, $C_8H_{24}NPSGaB$: C, 34.58; H, 8.71; N, 5.04. Found: C, 35.69; H, 8.43; N, 4.84%.

High resolution mass spectral data, assignment, m/e, Δ mmass, % intensity (calculated, based on * peak): **1a** (parent – CH₃)⁺, C₈H₂₁NO₂P¹¹B⁷¹Ga, 276.0662, 1.1, 37% (32%); C₈H₂₁NO₂P¹⁰B¹¹B⁷¹Ga, 275.0692, 0.4, 12% (8%); C₈H₂₁NO₂P¹¹B⁶⁹Ga, 274.0665, 0.5, 48% (*); C₈H₂₁NO₂P¹⁰B⁶⁹Ga, 273.0713, 1.7, 13% (12%); (CH₃)₂NCH₂⁺ C₃H₈N, 58.0678, 2, 100%. **1b** (parent – CH₃)⁺, C₇H₁₈N₂P¹¹B⁷¹Ga, 243.0553, 0.5, 8% (12%); C₇H₁₈N₂P¹⁰B⁷¹Ga, 242.0513, 7.2, 3% (3%); C₇H₁₈N₂P¹¹B⁶⁹Ga, 241.0560, 0.3, 18% (*); (CH₃)₂N=CH₂⁺ C₃H₈N, 58.0680, 2.3, 100%. **1c** (parent – CH₃)⁺, C₇H₂₁NPS¹¹B⁷¹Ga, 264.0485, 1.1, 19% (18%); C₇H₂₁NPS¹⁰B⁷¹Ga, 263.0522, 1.2, 7% (4%); C₇H₂₁NP¹¹B⁶⁹Ga, 261.0543, 2.4, 6% (7%); (CH₃)₂N=CH₂⁺, 58.0681, 2.4, 100%.

IR data: **1a**, 2961/2471s broad (structured), 2347m, 2276w, 1614s, 1383s, 1321m, 1191w, 1161w, 1044m, 947m, 925m, 718m. **1b** (mineral oil mull), 2368w, 2344m, 2273w, 1311w, 1290w, 1209w, 1142m, 1072w, 1046m,

TABLE 2. Synthesis of Me2NCH2BH2PMe2CH2GaMeX. All runs were with 0.218 mmol of 1

Product	Reactant, mmol	Temp/Time	CH ₄ , mmol	
	glacial HOAc, 0.35	RT, 24 h	0.17	clear viscous liquid; distills 65-70°C/ high vacuum
1b	HCN, 0.34	100°, ca. 15 h	0.12	38 mg (70%) white solid; sublimes 60-70°C/ high vacuum; mp 96-100°C
lc	MeSH, 0.24	100°, 17 h	0.22	16 mg (30%) viscous liquid; distills 60–70°C/ high vacuum

1026m, 1012w, 968m, 955m, 922m, 895m, 852m, 787m, 751m, 716s. **1c**, 2918s (structured), 2338s, 2275w, 1470m, 1420w, 1287m, 1142m, 1022s, 972s, 945s, 920s, 893w, 787m, 750m, 714s.

3.3. $Me_2 NCH_2 BH_2 NMe_2 CH_2 GaMeX.$ (2a-d)

Me₂NCH₂BH₂NMe₂CH₂GaMe₂ [11] was prepared from 1.258 g (9.25 mmol) of LiCH₂NMe₂BH₂CH₂ NMe₂ and 4.6 mmol of (Me₂GaCl)₂ in 18 ml benzene, and the product on workup was caught at -78° C by trap-to-trap distillation under dynamic pumping. The 5-0-acetyloxy-derivative (2a) was prepared by combining reagents neat in a small ampoule under vacuum and then heating the mixture to 60°C for 1 h. On opening, the gas was vented and the ampoule placed in a sublimer for heating under dynamic vacuum (10^{-5}) Torr) at 60°C. In a typical run, 37 mg (0.14 mmol) of product was obtained as white crystals, beginning with 39 mg (0.17 mmol) of heterocycle and 0.17 mmole (10.2 mmol) μ l) of acetic acid; yield, 80%; mp 55–57°C. Anal. calcd. for 2a, C₉H₂₄N₂O₂Ga: C, 39.62; H, 8.87; N, 10.27. Found: C, 39.82; H, 9.19; N, 10.30%. Mass data (FAB), m/e 271.1101; calculated for $C_{9}H_{24}N_{2}^{11}B^{69}GaO_{2}$, 271.11094.

In a similar manner the 5-formyloxy-derivative (2b) was isolated as a clear liquid. Anal. calcd. for 2b, $C_8H_{23}N_2O_2BGa$: C, 37.13; H, 8.57; N, 10.82. Found: C, 37.40; H, 8.89; N, 10.62%. Mass data (FAB), m/e 259.1120; calculated for $C_8H_{23}N_2O_2BGa$, 259.11094.

The 5-iodo-derivative (2c) was obtained by heating a mixture of 31 mg (0.14 mmol) of 2 and 25 mg (0.14 mmol) of Me₃NH⁺I⁻ in an ampoule for 4 days at 100°C. On opening, 0.32 mole total of gas was vented and the remaining residue was extracted with methylene chloride. The solution was transferred to a sublimer and solvent removed under vacuum. Heating at 60°C/high vacuum gave a white solid product reacting readily with water and air. High resolution mass spectral data: (Parent – H)⁺ C₇H₂₀N₂¹¹B⁷¹GaI, 341.0068, 5.8, 1.1% (0.9%); C₇H₂₀N₂¹¹B⁶⁹GaI, 339.0036, 1.7, 1.4% (*****); C₇H₂₀N₂¹⁰B⁶⁹GaI, 338.0042, -1.3, 0.37% (0.35%); (Parent – I⁻) C₇H₂₁N₂¹¹B⁷¹Ga, 215.1051, 0.6, 25.4% (23.7%); C₇H₂₁N₂¹⁰B⁶⁹Ga, 213.1051, -0.2, 36.1% (*****); C₇H₂₁N₂¹⁰B⁶⁹Ga, 212.1089, -0.1, 9.3% (9.0%); (CH₃)₂N=CH₂⁺ C₃H₈N, 58.0616, 0.4, 100%.

The 5-fluoro-derivative (2d) was prepared by heating 28 mg (0.12 mmol) of 1 and 25 mg (0.12 mmol) of $NMe_3H^+PF_6^-$ for 48 h at 95°C. IR examination of the condensible gas product showed bonds assignable to Me_3N and PF_5 . Remaining product soluble in methylene chloride was sublimed to give a white solid. Mass spectral data (FAB) m/e 232.1157, calculated for M – $H^+ C_7 H_{22} N_2^{10} B^{69} Ga$, 232.1153; low resolution FAB has $M - F^+ m/e$ 215, 213 peaks (75 and 100%).

IR data: 2a, 2382w shoulder, 2328m broad (structured), 2253w shoulder, 1640s, 1609w shoulder, 1383s, 1321s, 1288m, 1259vw, 1204w, 1102m, 1159s, 1115w, 1105m, 1038vw, 1005m, 982m, 926w, 880m, 740m, 721w. 2b (neat), 2993vw shoulder, 2920m, 2855m, 2342m, 2363w shoulder, 1651s, 1466m, 1277s, 1184m, 1161s, 1113w, 1099w, 1003m, 984m, 882m, 735m. 2c, 2332m (structured), 2249w, 1293w, 1209w, 1183w, 1159s, 1128vw, 1117w, 1099m, 1059m, 1036w, 1007m, 984w, 947w, 935vw, 882w, 864w, 729m. 2d (neat), 2909-2854s (structured), 2855vw shoulder, 2820w shoulder, 2363s (structured), 2262m shoulder, 1464s (structured), 1420vw, 1404w, 1315w, 1285m, 1258vw, 1231w, 1184s, 1177s, 1138w, 1111-1098m doublet, 1086w, 1017vw shoulder, 1003m, 978m, 922w, 879m, 860w shoulder, 754s, 723s.

3.4. $Me_2BCH_2NMe_2BH_2CH_2NMe_2$ (3)

A solution of 126 mg (0.93 mmol) of LiCH₂NMe₂-BH₂CH₂NMe₂ and 1.06 mmol of Me₂BCl (prepared from Me₃B and HCl) in 10 ml dry ether was sealed in an ampoule under vacuum. Upon warming to room temperature and stirring for 12 h, the mixture was fractionated through cold traps. The semi-solid trapped at -55° C was identified as title compound by high resolution mass spectral data (assignment, m/e, Δ (mmass), intensity): $(Parent - CH_3)^+ C_7 H_{21} N_2^{11} B_2$, 155.1896, 3.1, 2.1%; $C_7 H_{21} N_2^{11} B^{10} B$, 154.1922, -3.6, 1.0%; (Parent $-C_2H_5$)⁺ $C_6H_{19}N_2^{11}B_2$, 1.6, 5.1%; $C_6H_{19}N_2^{11}B^{10}B$, -11.3, 2.6%; $Me_2N=CH_2^+C_3H_8N$, 58.0678, +2.1, 100%. The IR spectrum excluded admixture with H₂BCH₂NMe₂BH₂CH₂NMe₂ impurity in the sample by absence of the latter's strong absorption at 915 and 1335 cm^{-1} , and an attenuated BH stretching absorption: (exclusive of absorption masked by mineral oil) 2340w (structured), 1400w, 1290s, 1240m (multiplet), 1110s (multiplet), 1065s, 985s, 910/890vw doublet, 870s.

3.5. $Me_2P(CH_2BH_2)_2SMe$ (4)

 $Me_2P(CH_2BH_2)_2H$ [8], 48.7 mg (0.42 mmol), 0.42 mmol MeSH, and 2 ml benzene were combined under vacuum in a 50 ml reaction flask attached to the vacuum line. Gas evolution commenced on warming to room temperature and continued briskly for about 15 min. After an additional stirring period of several h the total yield of noncondensible gas was 0.42 mmole. Solvent was removed under vacuum to leave a white solid which sublimed at 75°/high vacuum. A sample exposed to air for one day had an unchanged IR spectrum.

High resolution mass spectral data: $(Parent - H)^+ C_5H_{16}P^{11}B_2S$, 161.0896, 0, 2.5%; $C_5H_{16}P^{11}B^{10}B$, 160.0907, -1.0, 0.8%; $(Parent - 3H)^+ C_5H_{14}P^{11}B_2S$, 159.0743, 0.3, 8.2%; $C_5H_{14}P^{11}B^{10}BS$, 158.0779, 0.3, 4.2%; $(Parent - 5H)^+ C_5H_{12}P^{11}B_2$, 0.5, 2.2%; $C_5H_{12}P^{11}B_{10}B$, -0.2, 1.2%; $[Me_2P(CH_2BH_2)_2]^+ C_4H_{14}P^{11}B_2$, 0.8, 36.9%; $C_4H_{14}P^{11}B^{10}B$, 114.1052, -0.3, 19.7%; $C_4H_{14}P^{10}B_2$, 113.1093, 0.1, 1.6%; 57.0730, 100%; 56.0650, 27%.

IR data: 2365s, 2296s, 1420m, 1302/1291m doublet, 1164m, 1155m, 1132m, 1085m, 1057m, 1037m, 988/982m doublet, 960/953m doublet, 911w, 880w, 768m, 752w, 722w.

NMR data: ¹¹B, δ 19.0 (1:2:1 triplet), J_{HB} 103 Hz; ³¹P, δ 25.0 (H decoupled). ¹H, SMe 1.69 (3), PMe₂ 1.64, 1.59, 1.54 (*ca.* 1:2:1 triplet) PMe₂ (6); CH₂ 1.0 and -0.82 broad multiplets (4).

3.6. $Me_2P(CH_2BH_2)_2N(CH_2CH_2)_2CH_2$ (5)

A mixture of 71 mg (0.61 mmol) of Me_2P -(CH₂BH₂)₂H and 0.67 mmole of piperidine (dried over CaH₂) in 1 ml of dry THF produced a white insoluble solid judged to be H₃BCH₂(Me₂)P(CH₂-BH₂)₂NH(CH₂CH₂)₂CH₂ from presence of an NH IR absorption. Solvent was removed and the remaining solid was heated at 155°C for 4 h in a closed system. Sublimation and resublimation at 70°C/high vacuum of the pyrolyzed product gave 65 mg of title compound; mp 141–148°C, sealed cap. under N₂; yield 54%. Anal. calcd. for C₉H₂₄NPB₂: C, 54.35; H, 12.16; N, 7.04. Found: C, 54.00; H, 13.10; N, 7.03%.

IR data: 2403–2216s broad and structured BH, 1444m complex multiplet, 1308m, 1292m, 1209m, 1195s, 1174s, 1092s, 1058w, 1037/1043s doublet, 962/952s doublet, 942s, 874/870m doublet, 766m.

NMR data: ¹¹B, -11.7 (1:2:1 triplet); ¹H PMe₂ (6)

1.57 (doublet) J_{PCH} 12 Hz, N(CH₂CH₂)₂CH₂ (4, 3.6, 2.6) 2.59, 1.65, 1.48 structured multiplets; PCH₂ (3.4) 0.70-0.66 structured multiplet.

High resolution mass spectral data: $(Parent - H)^+$ ¹³CC₈H₂₃NP¹¹B₂, 199.1780, -0.7, 3.6%; C₉H₂₃NP¹¹ B₂, 198.1751, -0.3, 36%, C₉H₂₃NP¹¹B¹⁰B, 197.1728, 6.2, 28%; $(Parent - 3H)^+ C_9H_{21}NP^{11}B_2$, 196.1600, 0.2, 100%; C₈H₂₁NP¹¹B¹⁰B, 195.1625, -0.9, 49%.

Acknowledgments

Partial support for this work from a Cottrell College Science Grant (No. C-2595) (Research Corporation) is gratefully acknowledged. High resolution mass spectral determinations were made at the Midwest Center for Mass Spectrometry, a National Science Foundation Regional Instrumentation Facility (Grant No. CHE 8211164).

References

- 1 N.E. Miller and E.L. Muetterties, Inorg. Chem., 3 (1964) 1196.
- 2 N.E. Miller, M.D. Murphy and D.L. Reznicek, *Inorg. Chem.*, 5 (1966) 1832.
- 3 T.H. Hseu and L.A. Larsen, Inorg. Chem., 14 (1976) 336; T.H. Hseu, J. Mol. Struct., 53 (1979) 121.
- 4 N.E. Miller and E.L. Muetterties, J. Am. Chem. Soc., 86 (1964) 1033.
- 5 H. Schmidbaur, H.J. Füller, G. Müller and A. Frank, Chem. Ber., 112 (1979) 1448.
- 6 M.J. Byrne and N.E. Miller, Inorg. Chem., 20 (1981) 1328.
- 7 G.F. Warnock and N.E. Miller, Inorg. Chem., 18 (1979) 3620.
- 8 N.E. Miller, J. Organomet. Chem., 269 (1984) 123.
- 9 N.E. Miller and D.L. Reznicek, J. Organomet. Chem., 349 (1988) 11.
- 10 N.E. Miller, Inorg. Chem., 30 (1991) 2228.
- 11 N.E. Miller, J. Organomet. Chem., 137 (1977) 131.
- 12 J.L. Vidal and G.E. Ryschkewitsch, Inorg. Chem., 16 (1977) 1898.
- 13 N.E. Miller and D.L. Reznicek, J. Organomet. Chem., 349 (1988) 11.
- 14 R.J. Rowatt and N.E. Miller, J. Am. Chem. Soc., 89 (1967) 5509.